Properties

Modulus $144$
Structure \(C_{2}\times C_{2}\times C_{12}\)
Order $48$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(144)
 
pari: g = idealstar(,144,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 48
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{12}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{144}(127,\cdot)$, $\chi_{144}(37,\cdot)$, $\chi_{144}(65,\cdot)$

First 32 of 48 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{144}(1,\cdot)\) 144.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{144}(5,\cdot)\) 144.w 12 yes \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{144}(7,\cdot)\) 144.t 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{144}(11,\cdot)\) 144.u 12 yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{144}(13,\cdot)\) 144.x 12 yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{144}(17,\cdot)\) 144.e 2 no \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\) \(-1\) \(1\)
\(\chi_{144}(19,\cdot)\) 144.m 4 no \(-1\) \(1\) \(-i\) \(1\) \(i\) \(i\) \(1\) \(-i\) \(1\) \(-1\) \(i\) \(-1\)
\(\chi_{144}(23,\cdot)\) 144.p 6 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{144}(25,\cdot)\) 144.r 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{144}(29,\cdot)\) 144.w 12 yes \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{144}(31,\cdot)\) 144.o 6 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{144}(35,\cdot)\) 144.l 4 no \(1\) \(1\) \(i\) \(1\) \(-i\) \(i\) \(-1\) \(-i\) \(-1\) \(-1\) \(-i\) \(-1\)
\(\chi_{144}(37,\cdot)\) 144.k 4 no \(1\) \(1\) \(i\) \(-1\) \(i\) \(-i\) \(1\) \(-i\) \(-1\) \(-1\) \(-i\) \(1\)
\(\chi_{144}(41,\cdot)\) 144.n 6 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{144}(43,\cdot)\) 144.v 12 yes \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{144}(47,\cdot)\) 144.s 6 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{144}(49,\cdot)\) 144.i 3 no \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{144}(53,\cdot)\) 144.j 4 no \(-1\) \(1\) \(-i\) \(-1\) \(-i\) \(-i\) \(-1\) \(-i\) \(1\) \(-1\) \(i\) \(1\)
\(\chi_{144}(55,\cdot)\) 144.b 2 no \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\)
\(\chi_{144}(59,\cdot)\) 144.u 12 yes \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(-1\) \(i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{144}(61,\cdot)\) 144.x 12 yes \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{144}(65,\cdot)\) 144.q 6 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{144}(67,\cdot)\) 144.v 12 yes \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{144}(71,\cdot)\) 144.f 2 no \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\)
\(\chi_{144}(73,\cdot)\) 144.d 2 no \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(1\)
\(\chi_{144}(77,\cdot)\) 144.w 12 yes \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{144}(79,\cdot)\) 144.o 6 no \(-1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{144}(83,\cdot)\) 144.u 12 yes \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{144}(85,\cdot)\) 144.x 12 yes \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(-i\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{144}(89,\cdot)\) 144.h 2 no \(-1\) \(1\) \(1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(1\)
\(\chi_{144}(91,\cdot)\) 144.m 4 no \(-1\) \(1\) \(i\) \(1\) \(-i\) \(-i\) \(1\) \(i\) \(1\) \(-1\) \(-i\) \(-1\)
\(\chi_{144}(95,\cdot)\) 144.s 6 no \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\)
Click here to search among the remaining 16 characters.