from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(143, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([24,55]))
pari: [g,chi] = znchar(Mod(137,143))
Basic properties
Modulus: | \(143\) | |
Conductor: | \(143\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(60\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 143.x
\(\chi_{143}(15,\cdot)\) \(\chi_{143}(20,\cdot)\) \(\chi_{143}(37,\cdot)\) \(\chi_{143}(58,\cdot)\) \(\chi_{143}(59,\cdot)\) \(\chi_{143}(71,\cdot)\) \(\chi_{143}(80,\cdot)\) \(\chi_{143}(93,\cdot)\) \(\chi_{143}(97,\cdot)\) \(\chi_{143}(102,\cdot)\) \(\chi_{143}(115,\cdot)\) \(\chi_{143}(119,\cdot)\) \(\chi_{143}(124,\cdot)\) \(\chi_{143}(136,\cdot)\) \(\chi_{143}(137,\cdot)\) \(\chi_{143}(141,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{60})\) |
Fixed field: | Number field defined by a degree 60 polynomial |
Values on generators
\((79,67)\) → \((e\left(\frac{2}{5}\right),e\left(\frac{11}{12}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
\( \chi_{ 143 }(137, a) \) | \(-1\) | \(1\) | \(e\left(\frac{19}{60}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)