Properties

Label 143.114
Modulus $143$
Conductor $143$
Order $30$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(143, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([6,25]))
 
Copy content pari:[g,chi] = znchar(Mod(114,143))
 

Basic properties

Modulus: \(143\)
Conductor: \(143\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 143.u

\(\chi_{143}(4,\cdot)\) \(\chi_{143}(36,\cdot)\) \(\chi_{143}(49,\cdot)\) \(\chi_{143}(69,\cdot)\) \(\chi_{143}(75,\cdot)\) \(\chi_{143}(82,\cdot)\) \(\chi_{143}(108,\cdot)\) \(\chi_{143}(114,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.69503752297329754905479727341904896738456941915804813.1

Values on generators

\((79,67)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 143 }(114, a) \) \(1\)\(1\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{1}{3}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 143 }(114,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 143 }(114,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 143 }(114,·),\chi_{ 143 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 143 }(114,·)) \;\) at \(\; a,b = \) e.g. 1,2