sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(143, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([6,25]))
pari:[g,chi] = znchar(Mod(114,143))
| Modulus: | \(143\) | |
| Conductor: | \(143\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(30\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{143}(4,\cdot)\)
\(\chi_{143}(36,\cdot)\)
\(\chi_{143}(49,\cdot)\)
\(\chi_{143}(69,\cdot)\)
\(\chi_{143}(75,\cdot)\)
\(\chi_{143}(82,\cdot)\)
\(\chi_{143}(108,\cdot)\)
\(\chi_{143}(114,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((79,67)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{5}{6}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 143 }(114, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)