Properties

Label 14157.107
Modulus $14157$
Conductor $4719$
Order $330$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(14157, base_ring=CyclotomicField(330)) M = H._module chi = DirichletCharacter(H, M([165,189,110]))
 
Copy content pari:[g,chi] = znchar(Mod(107,14157))
 

Basic properties

Modulus: \(14157\)
Conductor: \(4719\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(330\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4719}(107,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 14157.ht

\(\chi_{14157}(35,\cdot)\) \(\chi_{14157}(107,\cdot)\) \(\chi_{14157}(458,\cdot)\) \(\chi_{14157}(503,\cdot)\) \(\chi_{14157}(809,\cdot)\) \(\chi_{14157}(854,\cdot)\) \(\chi_{14157}(926,\cdot)\) \(\chi_{14157}(1205,\cdot)\) \(\chi_{14157}(1394,\cdot)\) \(\chi_{14157}(1745,\cdot)\) \(\chi_{14157}(1790,\cdot)\) \(\chi_{14157}(2096,\cdot)\) \(\chi_{14157}(2141,\cdot)\) \(\chi_{14157}(2213,\cdot)\) \(\chi_{14157}(2492,\cdot)\) \(\chi_{14157}(2609,\cdot)\) \(\chi_{14157}(2681,\cdot)\) \(\chi_{14157}(3032,\cdot)\) \(\chi_{14157}(3077,\cdot)\) \(\chi_{14157}(3383,\cdot)\) \(\chi_{14157}(3779,\cdot)\) \(\chi_{14157}(3896,\cdot)\) \(\chi_{14157}(3968,\cdot)\) \(\chi_{14157}(4319,\cdot)\) \(\chi_{14157}(4364,\cdot)\) \(\chi_{14157}(4670,\cdot)\) \(\chi_{14157}(4715,\cdot)\) \(\chi_{14157}(4787,\cdot)\) \(\chi_{14157}(5066,\cdot)\) \(\chi_{14157}(5183,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{165})$
Fixed field: Number field defined by a degree 330 polynomial (not computed)

Values on generators

\((6293,3511,4357)\) → \((-1,e\left(\frac{63}{110}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 14157 }(107, a) \) \(1\)\(1\)\(e\left(\frac{67}{165}\right)\)\(e\left(\frac{134}{165}\right)\)\(e\left(\frac{97}{110}\right)\)\(e\left(\frac{223}{330}\right)\)\(e\left(\frac{12}{55}\right)\)\(e\left(\frac{19}{66}\right)\)\(e\left(\frac{9}{110}\right)\)\(e\left(\frac{103}{165}\right)\)\(e\left(\frac{38}{165}\right)\)\(e\left(\frac{67}{330}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 14157 }(107,a) \;\) at \(\;a = \) e.g. 2