# Properties

 Label 1400.m Modulus $1400$ Conductor $56$ Order $2$ Real yes Primitive no Minimal yes Parity odd

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1400, base_ring=CyclotomicField(2))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,1,0,1]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(1301,1400))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$1400$$ Conductor: $$56$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$2$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: no, induced from 56.h sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q(\sqrt{-14})$$

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$3$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$27$$ $$29$$ $$31$$
$$\chi_{1400}(1301,\cdot)$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$-1$$