# Properties

 Label 1400.1283 Modulus $1400$ Conductor $1400$ Order $60$ Real no Primitive yes Minimal yes Parity even

# Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1400, base_ring=CyclotomicField(60))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([30,30,9,20]))

pari: [g,chi] = znchar(Mod(1283,1400))

## Basic properties

 Modulus: $$1400$$ Conductor: $$1400$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$60$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1400.do

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{60})$$ Fixed field: Number field defined by a degree 60 polynomial

## Values on generators

$$(351,701,1177,801)$$ → $$(-1,-1,e\left(\frac{3}{20}\right),e\left(\frac{1}{3}\right))$$

## Values

 $$-1$$ $$1$$ $$3$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$27$$ $$29$$ $$31$$ $$1$$ $$1$$ $$e\left(\frac{23}{60}\right)$$ $$e\left(\frac{23}{30}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{17}{60}\right)$$ $$e\left(\frac{11}{30}\right)$$ $$e\left(\frac{49}{60}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{30}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 1400 }(1283,a) \;$$ at $$\;a =$$ e.g. 2