Character group
|
| ||
| Order | = | 48 |
|
| ||
| Structure | = | \(C_{2}\times C_{2}\times C_{12}\) |
|
| ||
| Generators | = | $\chi_{140}(71,\cdot)$, $\chi_{140}(57,\cdot)$, $\chi_{140}(101,\cdot)$ |
First 32 of 48 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
| Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| \(\chi_{140}(1,\cdot)\) | 140.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
| \(\chi_{140}(3,\cdot)\) | 140.x | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{140}(9,\cdot)\) | 140.q | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{140}(11,\cdot)\) | 140.t | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{140}(13,\cdot)\) | 140.m | 4 | no | \(1\) | \(1\) | \(-i\) | \(-1\) | \(1\) | \(-i\) | \(i\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(-1\) |
| \(\chi_{140}(17,\cdot)\) | 140.u | 12 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{140}(19,\cdot)\) | 140.s | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{140}(23,\cdot)\) | 140.w | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{140}(27,\cdot)\) | 140.j | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(i\) | \(-i\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(1\) |
| \(\chi_{140}(29,\cdot)\) | 140.e | 2 | no | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) |
| \(\chi_{140}(31,\cdot)\) | 140.o | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{140}(33,\cdot)\) | 140.u | 12 | no | \(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{140}(37,\cdot)\) | 140.v | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{140}(39,\cdot)\) | 140.p | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{140}(41,\cdot)\) | 140.d | 2 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) |
| \(\chi_{140}(43,\cdot)\) | 140.k | 4 | no | \(1\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(i\) | \(-i\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-1\) |
| \(\chi_{140}(47,\cdot)\) | 140.x | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |
| \(\chi_{140}(51,\cdot)\) | 140.t | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{140}(53,\cdot)\) | 140.v | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{140}(57,\cdot)\) | 140.l | 4 | no | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(1\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(i\) | \(-1\) | \(1\) |
| \(\chi_{140}(59,\cdot)\) | 140.s | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{140}(61,\cdot)\) | 140.r | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{140}(67,\cdot)\) | 140.w | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{140}(69,\cdot)\) | 140.h | 2 | no | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) |
| \(\chi_{140}(71,\cdot)\) | 140.b | 2 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(-1\) |
| \(\chi_{140}(73,\cdot)\) | 140.u | 12 | no | \(1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) |
| \(\chi_{140}(79,\cdot)\) | 140.p | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{140}(81,\cdot)\) | 140.i | 3 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{140}(83,\cdot)\) | 140.j | 4 | yes | \(-1\) | \(1\) | \(i\) | \(-1\) | \(-1\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(-i\) | \(-1\) | \(1\) |
| \(\chi_{140}(87,\cdot)\) | 140.x | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) |
| \(\chi_{140}(89,\cdot)\) | 140.n | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) |
| \(\chi_{140}(93,\cdot)\) | 140.v | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) |