# Properties

 Label 1386.65 Modulus $1386$ Conductor $693$ Order $6$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1386)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([1,2,3]))

pari: [g,chi] = znchar(Mod(65,1386))

## Basic properties

 Modulus: $$1386$$ Conductor: $$693$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$6$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{693}(65,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1386.p

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(155,199,1135)$$ → $$(e\left(\frac{1}{6}\right),e\left(\frac{1}{3}\right),-1)$$

## Values

 $$-1$$ $$1$$ $$5$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$37$$ $$41$$ $$1$$ $$1$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: 6.6.62901573273.3