# Properties

 Label 1386.61 Modulus $1386$ Conductor $693$ Order $30$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1386)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([20,25,27]))

pari: [g,chi] = znchar(Mod(61,1386))

## Basic properties

 Modulus: $$1386$$ Conductor: $$693$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$30$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{693}(61,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1386.db

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(155,199,1135)$$ → $$(e\left(\frac{2}{3}\right),e\left(\frac{5}{6}\right),e\left(\frac{9}{10}\right))$$

## Values

 $$-1$$ $$1$$ $$5$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$37$$ $$41$$ $$1$$ $$1$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{11}{15}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{13}{15}\right)$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{29}{30}\right)$$ $$e\left(\frac{17}{30}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{8}{15}\right)$$
 value at e.g. 2