Properties

Label 1386.149
Modulus $1386$
Conductor $693$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1386)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([25,10,27]))
 
pari: [g,chi] = znchar(Mod(149,1386))
 

Basic properties

Modulus: \(1386\)
Conductor: \(693\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{693}(149,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1386.ch

\(\chi_{1386}(149,\cdot)\) \(\chi_{1386}(767,\cdot)\) \(\chi_{1386}(893,\cdot)\) \(\chi_{1386}(1019,\cdot)\) \(\chi_{1386}(1031,\cdot)\) \(\chi_{1386}(1157,\cdot)\) \(\chi_{1386}(1271,\cdot)\) \(\chi_{1386}(1283,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((155,199,1135)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{1}{3}\right),e\left(\frac{9}{10}\right))\)

Values

\(-1\)\(1\)\(5\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\(1\)\(1\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{13}{15}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.3090436055135317762211701171120211681132969992614273937990792412553.2