# Properties

 Label 1380.bu Modulus $1380$ Conductor $345$ Order $44$ Real no Primitive no Minimal yes Parity even

# Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1380, base_ring=CyclotomicField(44))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,22,11,12]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(77,1380))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$1380$$ Conductor: $$345$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$44$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 345.x sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$
$$\chi_{1380}(77,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{5}{44}\right)$$
$$\chi_{1380}(173,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{44}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{27}{44}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{37}{44}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{35}{44}\right)$$
$$\chi_{1380}(197,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{15}{44}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{9}{44}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{27}{44}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{41}{44}\right)$$
$$\chi_{1380}(233,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{15}{44}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{1}{44}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{39}{44}\right)$$
$$\chi_{1380}(257,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{31}{44}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{13}{44}\right)$$ $$e\left(\frac{1}{44}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{3}{44}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{29}{44}\right)$$
$$\chi_{1380}(317,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{27}{44}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{17}{44}\right)$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{31}{44}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{21}{44}\right)$$
$$\chi_{1380}(353,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{41}{44}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{3}{44}\right)$$ $$e\left(\frac{7}{44}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{21}{44}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{27}{44}\right)$$
$$\chi_{1380}(377,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{39}{44}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{5}{44}\right)$$ $$e\left(\frac{41}{44}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{35}{44}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{1}{44}\right)$$
$$\chi_{1380}(473,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{37}{44}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{7}{44}\right)$$ $$e\left(\frac{31}{44}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{5}{44}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{19}{44}\right)$$
$$\chi_{1380}(533,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{9}{44}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{35}{44}\right)$$ $$e\left(\frac{23}{44}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{7}{44}\right)$$
$$\chi_{1380}(593,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{44}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{39}{44}\right)$$ $$e\left(\frac{3}{44}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{9}{44}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{43}{44}\right)$$
$$\chi_{1380}(653,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{17}{44}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{27}{44}\right)$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{13}{44}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{23}{44}\right)$$
$$\chi_{1380}(857,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{35}{44}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{9}{44}\right)$$ $$e\left(\frac{21}{44}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{37}{44}\right)$$
$$\chi_{1380}(1037,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{1}{44}\right)$$ $$e\left(\frac{17}{44}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{7}{44}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{9}{44}\right)$$
$$\chi_{1380}(1097,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{44}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{37}{44}\right)$$ $$e\left(\frac{13}{44}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{39}{44}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{25}{44}\right)$$
$$\chi_{1380}(1133,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{44}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{31}{44}\right)$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{41}{44}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{15}{44}\right)$$
$$\chi_{1380}(1277,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{23}{44}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{21}{44}\right)$$ $$e\left(\frac{5}{44}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{15}{44}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{13}{44}\right)$$
$$\chi_{1380}(1313,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{21}{44}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{23}{44}\right)$$ $$e\left(\frac{39}{44}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{31}{44}\right)$$
$$\chi_{1380}(1337,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{44}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{41}{44}\right)$$ $$e\left(\frac{37}{44}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{23}{44}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{17}{44}\right)$$
$$\chi_{1380}(1373,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{15}{44}\right)$$ $$e\left(\frac{35}{44}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{17}{44}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{3}{44}\right)$$