# Properties

 Label 1380.77 Modulus $1380$ Conductor $345$ Order $44$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1380, base_ring=CyclotomicField(44))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,22,11,12]))

pari: [g,chi] = znchar(Mod(77,1380))

## Basic properties

 Modulus: $$1380$$ Conductor: $$345$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$44$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{345}(77,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1380.bu

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(691,461,277,1201)$$ → $$(1,-1,i,e\left(\frac{3}{11}\right))$$

## Values

 $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$1$$ $$1$$ $$e\left(\frac{19}{44}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{25}{44}\right)$$ $$e\left(\frac{29}{44}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{43}{44}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{5}{44}\right)$$
 value at e.g. 2