Properties

Label 1380.1241
Modulus $1380$
Conductor $69$
Order $2$
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1380, base_ring=CyclotomicField(2))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,1,0,1]))
 
pari: [g,chi] = znchar(Mod(1241,1380))
 

Basic properties

Modulus: \(1380\)
Conductor: \(69\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{69}(68,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1380.i

\(\chi_{1380}(1241,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{69}) \)

Values on generators

\((691,461,277,1201)\) → \((1,-1,1,-1)\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\(1\)\(1\)\(-1\)\(1\)\(1\)\(1\)\(-1\)\(-1\)\(1\)\(-1\)\(-1\)\(-1\)
value at e.g. 2