from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(138, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([0,12]))
pari: [g,chi] = znchar(Mod(133,138))
Basic properties
Modulus: | \(138\) | |
Conductor: | \(23\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(11\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{23}(18,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 138.e
\(\chi_{138}(13,\cdot)\) \(\chi_{138}(25,\cdot)\) \(\chi_{138}(31,\cdot)\) \(\chi_{138}(49,\cdot)\) \(\chi_{138}(55,\cdot)\) \(\chi_{138}(73,\cdot)\) \(\chi_{138}(85,\cdot)\) \(\chi_{138}(121,\cdot)\) \(\chi_{138}(127,\cdot)\) \(\chi_{138}(133,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{11})\) |
Fixed field: | \(\Q(\zeta_{23})^+\) |
Values on generators
\((47,97)\) → \((1,e\left(\frac{6}{11}\right))\)
Values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 138 }(133, a) \) | \(1\) | \(1\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)