Properties

Modulus 137
Conductor 137
Order 34
Real no
Primitive yes
Minimal yes
Parity even
Orbit label 137.f

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(137)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([1]))
 
pari: [g,chi] = znchar(Mod(81,137))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Modulus = 137
Conductor = 137
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 34
Real = no
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = yes
Minimal = yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = even
Orbit label = 137.f
Orbit index = 6

Galois orbit

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{137}(4,\cdot)\) \(\chi_{137}(14,\cdot)\) \(\chi_{137}(15,\cdot)\) \(\chi_{137}(18,\cdot)\) \(\chi_{137}(22,\cdot)\) \(\chi_{137}(49,\cdot)\) \(\chi_{137}(63,\cdot)\) \(\chi_{137}(64,\cdot)\) \(\chi_{137}(65,\cdot)\) \(\chi_{137}(77,\cdot)\) \(\chi_{137}(78,\cdot)\) \(\chi_{137}(81,\cdot)\) \(\chi_{137}(87,\cdot)\) \(\chi_{137}(99,\cdot)\) \(\chi_{137}(103,\cdot)\) \(\chi_{137}(121,\cdot)\)

Values on generators

\(3\) → \(e\left(\frac{1}{34}\right)\)

Values

-11234567891011
\(1\)\(1\)\(e\left(\frac{5}{17}\right)\)\(e\left(\frac{1}{34}\right)\)\(e\left(\frac{10}{17}\right)\)\(e\left(\frac{7}{34}\right)\)\(e\left(\frac{11}{34}\right)\)\(e\left(\frac{4}{17}\right)\)\(e\left(\frac{15}{17}\right)\)\(e\left(\frac{1}{17}\right)\)\(-1\)\(e\left(\frac{10}{17}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{17})\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 137 }(81,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{137}(81,\cdot)) = \sum_{r\in \Z/137\Z} \chi_{137}(81,r) e\left(\frac{2r}{137}\right) = 11.442632179+2.4629593614i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 137 }(81,·),\chi_{ 137 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{137}(81,\cdot),\chi_{137}(1,\cdot)) = \sum_{r\in \Z/137\Z} \chi_{137}(81,r) \chi_{137}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 137 }(81,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{137}(81,·)) = \sum_{r \in \Z/137\Z} \chi_{137}(81,r) e\left(\frac{1 r + 2 r^{-1}}{137}\right) = 4.0160911028+5.3181640962i \)