# Properties

 Label 1368.235 Modulus $1368$ Conductor $152$ Order $6$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1368, base_ring=CyclotomicField(6))

M = H._module

chi = DirichletCharacter(H, M([3,3,0,2]))

pari: [g,chi] = znchar(Mod(235,1368))

## Basic properties

 Modulus: $$1368$$ Conductor: $$152$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$6$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{152}(83,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1368.bz

sage: chi.galois_orbit()

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: 6.0.66724352.1

## Values on generators

$$(343,685,1217,1009)$$ → $$(-1,-1,1,e\left(\frac{1}{3}\right))$$

## First values

 $$a$$ $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$23$$ $$25$$ $$29$$ $$31$$ $$35$$ $$\chi_{ 1368 }(235, a)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 1368 }(235,a) \;$$ at $$\;a =$$ e.g. 2