Properties

Label 1368.371
Modulus $1368$
Conductor $1368$
Order $18$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1368, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([9,9,3,17]))
 
Copy content pari:[g,chi] = znchar(Mod(371,1368))
 

Basic properties

Modulus: \(1368\)
Conductor: \(1368\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1368.ee

\(\chi_{1368}(59,\cdot)\) \(\chi_{1368}(371,\cdot)\) \(\chi_{1368}(659,\cdot)\) \(\chi_{1368}(1067,\cdot)\) \(\chi_{1368}(1211,\cdot)\) \(\chi_{1368}(1307,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.0.5609123167761479168918259506221906661474304.1

Values on generators

\((343,685,1217,1009)\) → \((-1,-1,e\left(\frac{1}{6}\right),e\left(\frac{17}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1368 }(371, a) \) \(-1\)\(1\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(-1\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{13}{18}\right)\)\(1\)\(e\left(\frac{5}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1368 }(371,a) \;\) at \(\;a = \) e.g. 2