from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(136, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([0,1,1]))
pari: [g,chi] = znchar(Mod(101,136))
Kronecker symbol representation
sage: kronecker_character(136)
pari: znchartokronecker(g,chi)
\(\displaystyle\left(\frac{136}{\bullet}\right)\)
Basic properties
Modulus: | \(136\) | |
Conductor: | \(136\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(2\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | yes | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 136.h
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q\) |
Fixed field: | \(\Q(\sqrt{34}) \) |
Values on generators
\((103,69,105)\) → \((1,-1,-1)\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 136 }(101, a) \) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)