Properties

Label 136.101
Modulus $136$
Conductor $136$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(136, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1,1]))
 
pari: [g,chi] = znchar(Mod(101,136))
 

Kronecker symbol representation

sage: kronecker_character(136)
 
pari: znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{136}{\bullet}\right)\)

Basic properties

Modulus: \(136\)
Conductor: \(136\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 136.h

\(\chi_{136}(101,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{34}) \)

Values on generators

\((103,69,105)\) → \((1,-1,-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(19\)\(21\)\(23\)
\( \chi_{ 136 }(101, a) \) \(1\)\(1\)\(1\)\(1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)\(-1\)\(-1\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 136 }(101,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 136 }(101,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 136 }(101,·),\chi_{ 136 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 136 }(101,·)) \;\) at \(\; a,b = \) e.g. 1,2