Conductor 45
Order 12
Real no
Primitive no
Minimal no
Parity even
Orbit label 1350.q

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(1350)
sage: chi = H[143]
pari: [g,chi] = znchar(Mod(143,1350))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 45
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 12
Real = no
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = no
Minimal = no
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = even
Orbit label = 1350.q
Orbit index = 17

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{1350}(143,\cdot)\) \(\chi_{1350}(557,\cdot)\) \(\chi_{1350}(1007,\cdot)\) \(\chi_{1350}(1043,\cdot)\)

Values on generators

\((1001,1027)\) → \((e\left(\frac{1}{6}\right),-i)\)


value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{12})\)