# Properties

 Label 1344.239 Modulus $1344$ Conductor $48$ Order $4$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1344)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([2,3,2,0]))

pari: [g,chi] = znchar(Mod(239,1344))

## Basic properties

 Modulus: $$1344$$ Conductor: $$48$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$4$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{48}(35,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1344.s

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(127,1093,449,577)$$ → $$(-1,-i,-1,1)$$

## Values

 $$-1$$ $$1$$ $$5$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$ $$37$$ $$1$$ $$1$$ $$i$$ $$-i$$ $$i$$ $$-1$$ $$-i$$ $$-1$$ $$-1$$ $$-i$$ $$-1$$ $$-i$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\sqrt{-1})$$ Fixed field: 4.4.18432.1