# Properties

 Label 1323.68 Modulus $1323$ Conductor $189$ Order $18$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1323, base_ring=CyclotomicField(18))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([17,15]))

pari: [g,chi] = znchar(Mod(68,1323))

## Basic properties

 Modulus: $$1323$$ Conductor: $$189$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{189}(68,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 1323.be

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(785,1081)$$ → $$(e\left(\frac{17}{18}\right),e\left(\frac{5}{6}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$4$$ $$5$$ $$8$$ $$10$$ $$11$$ $$13$$ $$16$$ $$17$$ $$19$$ $$1$$ $$1$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$1$$ $$-1$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: 18.18.14025781293956267101815048510107349.1