Properties

Label 1323.68
Modulus $1323$
Conductor $189$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1323, base_ring=CyclotomicField(18))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([17,15]))
 
pari: [g,chi] = znchar(Mod(68,1323))
 

Basic properties

Modulus: \(1323\)
Conductor: \(189\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{189}(68,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1323.be

\(\chi_{1323}(68,\cdot)\) \(\chi_{1323}(227,\cdot)\) \(\chi_{1323}(509,\cdot)\) \(\chi_{1323}(668,\cdot)\) \(\chi_{1323}(950,\cdot)\) \(\chi_{1323}(1109,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((785,1081)\) → \((e\left(\frac{17}{18}\right),e\left(\frac{5}{6}\right))\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\(1\)\(1\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{5}{6}\right)\)\(-1\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(1\)\(-1\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.14025781293956267101815048510107349.1