sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([11,0]))
pari:[g,chi] = znchar(Mod(50,1323))
\(\chi_{1323}(50,\cdot)\)
\(\chi_{1323}(344,\cdot)\)
\(\chi_{1323}(491,\cdot)\)
\(\chi_{1323}(785,\cdot)\)
\(\chi_{1323}(932,\cdot)\)
\(\chi_{1323}(1226,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((785,1081)\) → \((e\left(\frac{11}{18}\right),1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 1323 }(50, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)