sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([91,57]))
pari:[g,chi] = znchar(Mod(38,1323))
Modulus: | \(1323\) | |
Conductor: | \(1323\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1323}(5,\cdot)\)
\(\chi_{1323}(38,\cdot)\)
\(\chi_{1323}(101,\cdot)\)
\(\chi_{1323}(131,\cdot)\)
\(\chi_{1323}(164,\cdot)\)
\(\chi_{1323}(194,\cdot)\)
\(\chi_{1323}(257,\cdot)\)
\(\chi_{1323}(290,\cdot)\)
\(\chi_{1323}(320,\cdot)\)
\(\chi_{1323}(353,\cdot)\)
\(\chi_{1323}(383,\cdot)\)
\(\chi_{1323}(416,\cdot)\)
\(\chi_{1323}(446,\cdot)\)
\(\chi_{1323}(479,\cdot)\)
\(\chi_{1323}(542,\cdot)\)
\(\chi_{1323}(572,\cdot)\)
\(\chi_{1323}(605,\cdot)\)
\(\chi_{1323}(635,\cdot)\)
\(\chi_{1323}(698,\cdot)\)
\(\chi_{1323}(731,\cdot)\)
\(\chi_{1323}(761,\cdot)\)
\(\chi_{1323}(794,\cdot)\)
\(\chi_{1323}(824,\cdot)\)
\(\chi_{1323}(857,\cdot)\)
\(\chi_{1323}(887,\cdot)\)
\(\chi_{1323}(920,\cdot)\)
\(\chi_{1323}(983,\cdot)\)
\(\chi_{1323}(1013,\cdot)\)
\(\chi_{1323}(1046,\cdot)\)
\(\chi_{1323}(1076,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((785,1081)\) → \((e\left(\frac{13}{18}\right),e\left(\frac{19}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 1323 }(38, a) \) |
\(1\) | \(1\) | \(e\left(\frac{61}{126}\right)\) | \(e\left(\frac{61}{63}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{61}{126}\right)\) | \(e\left(\frac{89}{126}\right)\) | \(e\left(\frac{59}{63}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)