sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([112,27]))
pari:[g,chi] = znchar(Mod(34,1323))
Modulus: | \(1323\) | |
Conductor: | \(1323\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1323}(13,\cdot)\)
\(\chi_{1323}(34,\cdot)\)
\(\chi_{1323}(76,\cdot)\)
\(\chi_{1323}(139,\cdot)\)
\(\chi_{1323}(160,\cdot)\)
\(\chi_{1323}(202,\cdot)\)
\(\chi_{1323}(223,\cdot)\)
\(\chi_{1323}(265,\cdot)\)
\(\chi_{1323}(286,\cdot)\)
\(\chi_{1323}(328,\cdot)\)
\(\chi_{1323}(349,\cdot)\)
\(\chi_{1323}(412,\cdot)\)
\(\chi_{1323}(454,\cdot)\)
\(\chi_{1323}(475,\cdot)\)
\(\chi_{1323}(517,\cdot)\)
\(\chi_{1323}(580,\cdot)\)
\(\chi_{1323}(601,\cdot)\)
\(\chi_{1323}(643,\cdot)\)
\(\chi_{1323}(664,\cdot)\)
\(\chi_{1323}(706,\cdot)\)
\(\chi_{1323}(727,\cdot)\)
\(\chi_{1323}(769,\cdot)\)
\(\chi_{1323}(790,\cdot)\)
\(\chi_{1323}(853,\cdot)\)
\(\chi_{1323}(895,\cdot)\)
\(\chi_{1323}(916,\cdot)\)
\(\chi_{1323}(958,\cdot)\)
\(\chi_{1323}(1021,\cdot)\)
\(\chi_{1323}(1042,\cdot)\)
\(\chi_{1323}(1084,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((785,1081)\) → \((e\left(\frac{8}{9}\right),e\left(\frac{3}{14}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 1323 }(34, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{29}{63}\right)\) | \(e\left(\frac{58}{63}\right)\) | \(e\left(\frac{83}{126}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{8}{63}\right)\) | \(e\left(\frac{23}{126}\right)\) | \(e\left(\frac{53}{63}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)