Properties

Label 1323.148
Modulus $1323$
Conductor $27$
Order $9$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1323, base_ring=CyclotomicField(18))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([8,0]))
 
pari: [g,chi] = znchar(Mod(148,1323))
 

Basic properties

Modulus: \(1323\)
Conductor: \(27\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(9\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{27}(13,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1323.w

\(\chi_{1323}(148,\cdot)\) \(\chi_{1323}(295,\cdot)\) \(\chi_{1323}(589,\cdot)\) \(\chi_{1323}(736,\cdot)\) \(\chi_{1323}(1030,\cdot)\) \(\chi_{1323}(1177,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((785,1081)\) → \((e\left(\frac{4}{9}\right),1)\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\(1\)\(1\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: \(\Q(\zeta_{27})^+\)