from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1309, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,2,3]))
pari: [g,chi] = znchar(Mod(769,1309))
Basic properties
Modulus: | \(1309\) | |
Conductor: | \(1309\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(4\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 1309.m
\(\chi_{1309}(769,\cdot)\) \(\chi_{1309}(846,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\mathbb{Q}(i)\) |
Fixed field: | 4.4.29129177.2 |
Values on generators
\((1123,596,309)\) → \((-1,-1,-i)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(12\) | \(13\) |
\( \chi_{ 1309 }(769, a) \) | \(1\) | \(1\) | \(1\) | \(i\) | \(1\) | \(i\) | \(i\) | \(1\) | \(-1\) | \(i\) | \(i\) | \(1\) |
sage: chi.jacobi_sum(n)