Properties

Label 1309.846
Modulus $1309$
Conductor $1309$
Order $4$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1309, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,2,1]))
 
pari: [g,chi] = znchar(Mod(846,1309))
 

Basic properties

Modulus: \(1309\)
Conductor: \(1309\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1309.m

\(\chi_{1309}(769,\cdot)\) \(\chi_{1309}(846,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.29129177.2

Values on generators

\((1123,596,309)\) → \((-1,-1,i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(12\)\(13\)
\( \chi_{ 1309 }(846, a) \) \(1\)\(1\)\(1\)\(-i\)\(1\)\(-i\)\(-i\)\(1\)\(-1\)\(-i\)\(-i\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1309 }(846,a) \;\) at \(\;a = \) e.g. 2