from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1305, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([0,21,27]))
chi.galois_orbit()
[g,chi] = znchar(Mod(73,1305))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(1305\) | |
Conductor: | \(145\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(28\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 145.o | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{28})\) |
Fixed field: | 28.28.1455848000512373226044338588471370773272037506103515625.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{1305}(73,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(1\) | \(e\left(\frac{5}{28}\right)\) |
\(\chi_{1305}(127,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(1\) | \(e\left(\frac{15}{28}\right)\) |
\(\chi_{1305}(163,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(1\) | \(e\left(\frac{1}{28}\right)\) |
\(\chi_{1305}(217,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(1\) | \(e\left(\frac{19}{28}\right)\) |
\(\chi_{1305}(298,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(1\) | \(e\left(\frac{13}{28}\right)\) |
\(\chi_{1305}(433,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(1\) | \(e\left(\frac{9}{28}\right)\) |
\(\chi_{1305}(757,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(1\) | \(e\left(\frac{3}{28}\right)\) |
\(\chi_{1305}(793,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(1\) | \(e\left(\frac{25}{28}\right)\) |
\(\chi_{1305}(802,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(1\) | \(e\left(\frac{11}{28}\right)\) |
\(\chi_{1305}(838,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(1\) | \(e\left(\frac{17}{28}\right)\) |
\(\chi_{1305}(1162,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(1\) | \(e\left(\frac{23}{28}\right)\) |
\(\chi_{1305}(1297,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{19}{28}\right)\) | \(e\left(\frac{11}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(1\) | \(e\left(\frac{27}{28}\right)\) |