Properties

Label 1305.709
Modulus $1305$
Conductor $1305$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([28,21,27]))
 
pari: [g,chi] = znchar(Mod(709,1305))
 

Basic properties

Modulus: \(1305\)
Conductor: \(1305\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1305.co

\(\chi_{1305}(4,\cdot)\) \(\chi_{1305}(34,\cdot)\) \(\chi_{1305}(274,\cdot)\) \(\chi_{1305}(439,\cdot)\) \(\chi_{1305}(499,\cdot)\) \(\chi_{1305}(544,\cdot)\) \(\chi_{1305}(589,\cdot)\) \(\chi_{1305}(709,\cdot)\) \(\chi_{1305}(904,\cdot)\) \(\chi_{1305}(934,\cdot)\) \(\chi_{1305}(979,\cdot)\) \(\chi_{1305}(1024,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((146,262,901)\) → \((e\left(\frac{2}{3}\right),-1,e\left(\frac{9}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 1305 }(709, a) \) \(1\)\(1\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{37}{42}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{31}{42}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{29}{42}\right)\)\(e\left(\frac{5}{21}\right)\)\(1\)\(e\left(\frac{11}{14}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1305 }(709,a) \;\) at \(\;a = \) e.g. 2