Properties

Label 1305.28
Modulus $1305$
Conductor $145$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1305, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,2]))
 
pari: [g,chi] = znchar(Mod(28,1305))
 

Basic properties

Modulus: \(1305\)
Conductor: \(145\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{145}(28,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1305.o

\(\chi_{1305}(28,\cdot)\) \(\chi_{1305}(1072,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.0.105125.2

Values on generators

\((146,262,901)\) → \((1,-i,-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 1305 }(28, a) \) \(-1\)\(1\)\(i\)\(-1\)\(-i\)\(-i\)\(-1\)\(i\)\(1\)\(1\)\(i\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1305 }(28,a) \;\) at \(\;a = \) e.g. 2