# Properties

 Modulus $13$ Structure $$C_{12}$$ Order $12$

Show commands: PariGP / SageMath

sage: H = DirichletGroup(13)

pari: g = idealstar(,13,2)

## Character group

 sage: G.order()  pari: g.no Order = 12 sage: H.invariants()  pari: g.cyc Structure = $$C_{12}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{13}(2,\cdot)$

## Characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$7$$ $$8$$ $$9$$ $$10$$ $$11$$
$$\chi_{13}(1,\cdot)$$ 13.a 1 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{13}(2,\cdot)$$ 13.f 12 yes $$-1$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-i$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{11}{12}\right)$$ $$i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{7}{12}\right)$$
$$\chi_{13}(3,\cdot)$$ 13.c 3 yes $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$
$$\chi_{13}(4,\cdot)$$ 13.e 6 yes $$1$$ $$1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{13}(5,\cdot)$$ 13.d 4 yes $$-1$$ $$1$$ $$-i$$ $$1$$ $$-1$$ $$-i$$ $$-i$$ $$i$$ $$i$$ $$1$$ $$-1$$ $$i$$
$$\chi_{13}(6,\cdot)$$ 13.f 12 yes $$-1$$ $$1$$ $$e\left(\frac{5}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$-i$$ $$e\left(\frac{1}{12}\right)$$ $$e\left(\frac{7}{12}\right)$$ $$i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{12}\right)$$
$$\chi_{13}(7,\cdot)$$ 13.f 12 yes $$-1$$ $$1$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$i$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{12}\right)$$ $$-i$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{12}\right)$$
$$\chi_{13}(8,\cdot)$$ 13.d 4 yes $$-1$$ $$1$$ $$i$$ $$1$$ $$-1$$ $$i$$ $$i$$ $$-i$$ $$-i$$ $$1$$ $$-1$$ $$-i$$
$$\chi_{13}(9,\cdot)$$ 13.c 3 yes $$1$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$
$$\chi_{13}(10,\cdot)$$ 13.e 6 yes $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{13}(11,\cdot)$$ 13.f 12 yes $$-1$$ $$1$$ $$e\left(\frac{7}{12}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$i$$ $$e\left(\frac{11}{12}\right)$$ $$e\left(\frac{5}{12}\right)$$ $$-i$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{12}\right)$$
$$\chi_{13}(12,\cdot)$$ 13.b 2 yes $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$1$$ $$-1$$