sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(128, base_ring=CyclotomicField(8))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([4,5]))
pari: [g,chi] = znchar(Mod(79,128))
Basic properties
Modulus: | \(128\) | |
Conductor: | \(32\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(8\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{32}(11,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 128.h
\(\chi_{128}(15,\cdot)\) \(\chi_{128}(47,\cdot)\) \(\chi_{128}(79,\cdot)\) \(\chi_{128}(111,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\((127,5)\) → \((-1,e\left(\frac{5}{8}\right))\)
Values
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) |
Related number fields
Field of values: | \(\Q(\zeta_{8})\) |
Fixed field: | 8.0.2147483648.1 |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{128}(79,\cdot)) = \sum_{r\in \Z/128\Z} \chi_{128}(79,r) e\left(\frac{r}{64}\right) = 0.0 \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{128}(79,\cdot),\chi_{128}(1,\cdot)) = \sum_{r\in \Z/128\Z} \chi_{128}(79,r) \chi_{128}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{128}(79,·))
= \sum_{r \in \Z/128\Z}
\chi_{128}(79,r) e\left(\frac{1 r + 2 r^{-1}}{128}\right)
= 0.0 \)