Properties

Label 1275.ba
Modulus $1275$
Conductor $85$
Order $8$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1275, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([0,4,3])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(49,1275)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1275\)
Conductor: \(85\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 85.m
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.256461670625.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(19\) \(22\)
\(\chi_{1275}(49,\cdot)\) \(1\) \(1\) \(-i\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(i\) \(e\left(\frac{5}{8}\right)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(1\) \(i\) \(e\left(\frac{3}{8}\right)\)
\(\chi_{1275}(274,\cdot)\) \(1\) \(1\) \(-i\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(i\) \(e\left(\frac{1}{8}\right)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(1\) \(i\) \(e\left(\frac{7}{8}\right)\)
\(\chi_{1275}(349,\cdot)\) \(1\) \(1\) \(i\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(-i\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(1\) \(-i\) \(e\left(\frac{1}{8}\right)\)
\(\chi_{1275}(1249,\cdot)\) \(1\) \(1\) \(i\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(-i\) \(e\left(\frac{3}{8}\right)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(1\) \(-i\) \(e\left(\frac{5}{8}\right)\)