sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1248, base_ring=CyclotomicField(8))
M = H._module
chi = DirichletCharacter(H, M([0,3,0,0]))
pari:[g,chi] = znchar(Mod(157,1248))
\(\chi_{1248}(157,\cdot)\)
\(\chi_{1248}(469,\cdot)\)
\(\chi_{1248}(781,\cdot)\)
\(\chi_{1248}(1093,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,1093,833,769)\) → \((1,e\left(\frac{3}{8}\right),1,1)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 1248 }(157, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(1\) | \(e\left(\frac{1}{8}\right)\) |
sage:chi.jacobi_sum(n)