sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(124, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,26]))
pari:[g,chi] = znchar(Mod(49,124))
\(\chi_{124}(9,\cdot)\)
\(\chi_{124}(41,\cdot)\)
\(\chi_{124}(45,\cdot)\)
\(\chi_{124}(49,\cdot)\)
\(\chi_{124}(69,\cdot)\)
\(\chi_{124}(81,\cdot)\)
\(\chi_{124}(113,\cdot)\)
\(\chi_{124}(121,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((63,65)\) → \((1,e\left(\frac{13}{15}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\( \chi_{ 124 }(49, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)