Properties

Label 1232.dn
Modulus $1232$
Conductor $1232$
Order $60$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1232, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([0,15,20,12])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(37,1232)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1232\)
Conductor: \(1232\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(13\) \(15\) \(17\) \(19\) \(23\) \(25\) \(27\)
\(\chi_{1232}(37,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{1232}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{1232}(93,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{1232}(317,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{1232}(333,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{19}{20}\right)\)
\(\chi_{1232}(389,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{20}\right)\)
\(\chi_{1232}(445,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{7}{20}\right)\)
\(\chi_{1232}(597,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{1232}(653,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{1232}(669,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{3}{20}\right)\)
\(\chi_{1232}(709,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{1232}(933,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{13}{20}\right)\)
\(\chi_{1232}(949,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{9}{20}\right)\)
\(\chi_{1232}(1005,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{11}{20}\right)\)
\(\chi_{1232}(1061,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{17}{20}\right)\)
\(\chi_{1232}(1213,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{19}{20}\right)\)