sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1232, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([0,0,2,0]))
pari:[g,chi] = znchar(Mod(177,1232))
\(\chi_{1232}(177,\cdot)\)
\(\chi_{1232}(529,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((463,309,353,673)\) → \((1,1,e\left(\frac{1}{3}\right),1)\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) | \(27\) |
| \( \chi_{ 1232 }(177, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)