Properties

Label 1225.v
Modulus $1225$
Conductor $25$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1225, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([11,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(148,1225)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1225\)
Conductor: \(25\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 25.f
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(8\) \(9\) \(11\) \(12\) \(13\) \(16\)
\(\chi_{1225}(148,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{1225}(197,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{1225}(442,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{1225}(638,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{1225}(687,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{1225}(883,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{1225}(1128,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{1225}(1177,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{5}\right)\)