Properties

Label 1225.174
Modulus $1225$
Conductor $245$
Order $14$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1225)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([7,1]))
 
pari: [g,chi] = znchar(Mod(174,1225))
 

Basic properties

Modulus: \(1225\)
Conductor: \(245\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{245}(174,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1225.s

\(\chi_{1225}(174,\cdot)\) \(\chi_{1225}(349,\cdot)\) \(\chi_{1225}(524,\cdot)\) \(\chi_{1225}(699,\cdot)\) \(\chi_{1225}(874,\cdot)\) \(\chi_{1225}(1049,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((1177,101)\) → \((-1,e\left(\frac{1}{14}\right))\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\(-1\)\(1\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{3}{7}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.0.104770985911247257875546875.1