sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1225, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([7,50]))
pari:[g,chi] = znchar(Mod(554,1225))
Modulus: | \(1225\) | |
Conductor: | \(1225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(70\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1225}(29,\cdot)\)
\(\chi_{1225}(64,\cdot)\)
\(\chi_{1225}(134,\cdot)\)
\(\chi_{1225}(169,\cdot)\)
\(\chi_{1225}(204,\cdot)\)
\(\chi_{1225}(239,\cdot)\)
\(\chi_{1225}(309,\cdot)\)
\(\chi_{1225}(379,\cdot)\)
\(\chi_{1225}(414,\cdot)\)
\(\chi_{1225}(484,\cdot)\)
\(\chi_{1225}(519,\cdot)\)
\(\chi_{1225}(554,\cdot)\)
\(\chi_{1225}(659,\cdot)\)
\(\chi_{1225}(694,\cdot)\)
\(\chi_{1225}(729,\cdot)\)
\(\chi_{1225}(764,\cdot)\)
\(\chi_{1225}(869,\cdot)\)
\(\chi_{1225}(904,\cdot)\)
\(\chi_{1225}(939,\cdot)\)
\(\chi_{1225}(1009,\cdot)\)
\(\chi_{1225}(1044,\cdot)\)
\(\chi_{1225}(1114,\cdot)\)
\(\chi_{1225}(1184,\cdot)\)
\(\chi_{1225}(1219,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1177,101)\) → \((e\left(\frac{1}{10}\right),e\left(\frac{5}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\( \chi_{ 1225 }(554, a) \) |
\(1\) | \(1\) | \(e\left(\frac{47}{70}\right)\) | \(e\left(\frac{29}{70}\right)\) | \(e\left(\frac{12}{35}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{1}{70}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{6}{35}\right)\) | \(e\left(\frac{53}{70}\right)\) | \(e\left(\frac{33}{70}\right)\) | \(e\left(\frac{24}{35}\right)\) |
sage:chi.jacobi_sum(n)