sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(121, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([7]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(7,121))
         
     
    
  
   | Modulus: |  \(121\) |   |  
   | Conductor: |  \(121\) |  
    
         
        sage:chi.conductor()
          
     
    
    
         
        pari:znconreyconductor(g,chi)
          
     
    
 |  
   | Order: |  \(110\) |  
    
         
        sage:chi.multiplicative_order()
          
     
    
    
         
        pari:charorder(g,chi)
          
     
    
 |  
   | Real: |   no  |  
   | Primitive: |   yes |   
    
         
        sage:chi.is_primitive()
          
     
    
    
         
        pari:#znconreyconductor(g,chi)==1
          
     
    
 |  
     | Minimal:  |  yes |  
       | Parity:  |  odd |  
    
         
        sage:chi.is_odd()
          
     
    
    
         
        pari:zncharisodd(g,chi)
          
     
    
 |  
   
  \(\chi_{121}(2,\cdot)\)
  \(\chi_{121}(6,\cdot)\)
  \(\chi_{121}(7,\cdot)\)
  \(\chi_{121}(8,\cdot)\)
  \(\chi_{121}(13,\cdot)\)
  \(\chi_{121}(17,\cdot)\)
  \(\chi_{121}(18,\cdot)\)
  \(\chi_{121}(19,\cdot)\)
  \(\chi_{121}(24,\cdot)\)
  \(\chi_{121}(28,\cdot)\)
  \(\chi_{121}(29,\cdot)\)
  \(\chi_{121}(30,\cdot)\)
  \(\chi_{121}(35,\cdot)\)
  \(\chi_{121}(39,\cdot)\)
  \(\chi_{121}(41,\cdot)\)
  \(\chi_{121}(46,\cdot)\)
  \(\chi_{121}(50,\cdot)\)
  \(\chi_{121}(51,\cdot)\)
  \(\chi_{121}(52,\cdot)\)
  \(\chi_{121}(57,\cdot)\)
  \(\chi_{121}(61,\cdot)\)
  \(\chi_{121}(62,\cdot)\)
  \(\chi_{121}(63,\cdot)\)
  \(\chi_{121}(68,\cdot)\)
  \(\chi_{121}(72,\cdot)\)
  \(\chi_{121}(73,\cdot)\)
  \(\chi_{121}(74,\cdot)\)
  \(\chi_{121}(79,\cdot)\)
  \(\chi_{121}(83,\cdot)\)
  \(\chi_{121}(84,\cdot)\)
 ... 
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\(2\) → \(e\left(\frac{7}{110}\right)\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |       
    
    
      | \( \chi_{ 121 }(7, a) \) | 
      \(-1\) | \(1\) | \(e\left(\frac{7}{110}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{49}{110}\right)\) | \(e\left(\frac{21}{110}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)