Properties

 Modulus $1200$ Structure $$C_{2}\times C_{2}\times C_{4}\times C_{20}$$ Order $320$

Show commands: PariGP / SageMath

sage: H = DirichletGroup(1200)

pari: g = idealstar(,1200,2)

Character group

 sage: G.order()  pari: g.no Order = 320 sage: H.invariants()  pari: g.cyc Structure = $$C_{2}\times C_{2}\times C_{4}\times C_{20}$$ sage: H.gens()  pari: g.gen Generators = $\chi_{1200}(751,\cdot)$, $\chi_{1200}(901,\cdot)$, $\chi_{1200}(401,\cdot)$, $\chi_{1200}(577,\cdot)$

First 32 of 320 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$
$$\chi_{1200}(1,\cdot)$$ 1200.a 1 no $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
$$\chi_{1200}(7,\cdot)$$ 1200.bh 4 no $$1$$ $$1$$ $$-i$$ $$1$$ $$i$$ $$i$$ $$-1$$ $$i$$ $$1$$ $$-1$$ $$-i$$ $$1$$
$$\chi_{1200}(11,\cdot)$$ 1200.db 20 yes $$1$$ $$1$$ $$1$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{1}{5}\right)$$
$$\chi_{1200}(13,\cdot)$$ 1200.cr 20 no $$-1$$ $$1$$ $$i$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$
$$\chi_{1200}(17,\cdot)$$ 1200.cw 20 no $$1$$ $$1$$ $$i$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$
$$\chi_{1200}(19,\cdot)$$ 1200.ch 20 no $$-1$$ $$1$$ $$-1$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$
$$\chi_{1200}(23,\cdot)$$ 1200.cx 20 no $$-1$$ $$1$$ $$i$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{7}{10}\right)$$
$$\chi_{1200}(29,\cdot)$$ 1200.cz 20 yes $$-1$$ $$1$$ $$1$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{1200}(31,\cdot)$$ 1200.bt 10 no $$-1$$ $$1$$ $$-1$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$
$$\chi_{1200}(37,\cdot)$$ 1200.cr 20 no $$-1$$ $$1$$ $$-i$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$
$$\chi_{1200}(41,\cdot)$$ 1200.bz 10 no $$-1$$ $$1$$ $$1$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$
$$\chi_{1200}(43,\cdot)$$ 1200.bc 4 no $$1$$ $$1$$ $$-i$$ $$-i$$ $$1$$ $$-i$$ $$-i$$ $$i$$ $$i$$ $$-1$$ $$1$$ $$-1$$
$$\chi_{1200}(47,\cdot)$$ 1200.ci 20 no $$-1$$ $$1$$ $$-i$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{9}{10}\right)$$
$$\chi_{1200}(49,\cdot)$$ 1200.f 2 no $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$
$$\chi_{1200}(53,\cdot)$$ 1200.cm 20 yes $$1$$ $$1$$ $$i$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{1200}(59,\cdot)$$ 1200.ce 20 yes $$1$$ $$1$$ $$-1$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{4}{5}\right)$$
$$\chi_{1200}(61,\cdot)$$ 1200.cf 20 no $$1$$ $$1$$ $$-1$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{7}{10}\right)$$
$$\chi_{1200}(67,\cdot)$$ 1200.cp 20 no $$1$$ $$1$$ $$i$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$
$$\chi_{1200}(71,\cdot)$$ 1200.bw 10 no $$1$$ $$1$$ $$-1$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$
$$\chi_{1200}(73,\cdot)$$ 1200.cu 20 no $$-1$$ $$1$$ $$-i$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{1}{5}\right)$$
$$\chi_{1200}(77,\cdot)$$ 1200.cm 20 yes $$1$$ $$1$$ $$-i$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$
$$\chi_{1200}(79,\cdot)$$ 1200.cd 10 no $$-1$$ $$1$$ $$1$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{1200}(83,\cdot)$$ 1200.cs 20 yes $$-1$$ $$1$$ $$-i$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{9}{20}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$
$$\chi_{1200}(89,\cdot)$$ 1200.bp 10 no $$-1$$ $$1$$ $$-1$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$
$$\chi_{1200}(91,\cdot)$$ 1200.cy 20 no $$-1$$ $$1$$ $$1$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$
$$\chi_{1200}(97,\cdot)$$ 1200.cl 20 no $$-1$$ $$1$$ $$i$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{1200}(101,\cdot)$$ 1200.r 4 no $$-1$$ $$1$$ $$-1$$ $$-i$$ $$-i$$ $$-1$$ $$-i$$ $$1$$ $$i$$ $$1$$ $$i$$ $$1$$
$$\chi_{1200}(103,\cdot)$$ 1200.ck 20 no $$1$$ $$1$$ $$i$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{7}{20}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{3}{10}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{2}{5}\right)$$
$$\chi_{1200}(107,\cdot)$$ 1200.z 4 no $$-1$$ $$1$$ $$i$$ $$i$$ $$-1$$ $$-i$$ $$-i$$ $$i$$ $$-i$$ $$-1$$ $$-1$$ $$1$$
$$\chi_{1200}(109,\cdot)$$ 1200.da 20 no $$1$$ $$1$$ $$1$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{13}{20}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$
$$\chi_{1200}(113,\cdot)$$ 1200.cw 20 no $$1$$ $$1$$ $$-i$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{17}{20}\right)$$ $$e\left(\frac{1}{10}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{11}{20}\right)$$ $$e\left(\frac{3}{10}\right)$$
$$\chi_{1200}(119,\cdot)$$ 1200.ca 10 no $$1$$ $$1$$ $$1$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{1}{5}\right)$$ $$e\left(\frac{9}{10}\right)$$ $$e\left(\frac{4}{5}\right)$$ $$e\left(\frac{7}{10}\right)$$ $$e\left(\frac{3}{5}\right)$$ $$e\left(\frac{1}{10}\right)$$