sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(120)
sage: chi = H[101]
pari: [g,chi] = znchar(Mod(101,120))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 24 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 2 |
Real | = | Yes |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | No |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Odd |
Orbit label | = | 120.n |
Orbit index | = | 14 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Inducing primitive character
\(\chi_{24}(5,\cdot)\) = \(\displaystyle\left(\frac{-24}{\bullet}\right)\)
Values on generators
\((31,61,41,97)\) → \((1,-1,-1,1)\)
Values
-1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
\(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) |
Related number fields
Field of values | \(\Q\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{120}(101,\cdot)) = \sum_{r\in \Z/120\Z} \chi_{120}(101,r) e\left(\frac{r}{60}\right) = -0.0 \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{120}(101,\cdot),\chi_{120}(1,\cdot)) = \sum_{r\in \Z/120\Z} \chi_{120}(101,r) \chi_{120}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{120}(101,·))
= \sum_{r \in \Z/120\Z}
\chi_{120}(101,r) e\left(\frac{1 r + 2 r^{-1}}{120}\right)
= 0.0 \)