sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(116, base_ring=CyclotomicField(28))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([14,15]))
pari: [g,chi] = znchar(Mod(27,116))
Basic properties
Modulus: | \(116\) | |
Conductor: | \(116\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(28\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 116.l
\(\chi_{116}(3,\cdot)\) \(\chi_{116}(11,\cdot)\) \(\chi_{116}(15,\cdot)\) \(\chi_{116}(19,\cdot)\) \(\chi_{116}(27,\cdot)\) \(\chi_{116}(31,\cdot)\) \(\chi_{116}(39,\cdot)\) \(\chi_{116}(43,\cdot)\) \(\chi_{116}(47,\cdot)\) \(\chi_{116}(55,\cdot)\) \(\chi_{116}(79,\cdot)\) \(\chi_{116}(95,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{28})\) |
Fixed field: | \(\Q(\zeta_{116})^+\) |
Values on generators
\((59,89)\) → \((-1,e\left(\frac{15}{28}\right))\)
Values
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
\(1\) | \(1\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{27}{28}\right)\) | \(i\) | \(e\left(\frac{9}{28}\right)\) | \(e\left(\frac{3}{28}\right)\) |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{116}(27,\cdot)) = \sum_{r\in \Z/116\Z} \chi_{116}(27,r) e\left(\frac{r}{58}\right) = 0.0 \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{116}(27,\cdot),\chi_{116}(1,\cdot)) = \sum_{r\in \Z/116\Z} \chi_{116}(27,r) \chi_{116}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{116}(27,·))
= \sum_{r \in \Z/116\Z}
\chi_{116}(27,r) e\left(\frac{1 r + 2 r^{-1}}{116}\right)
= -1.5387424487+13.6567169548i \)