Properties

Label 116.109
Modulus $116$
Conductor $29$
Order $14$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(116, base_ring=CyclotomicField(14))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,13]))
 
pari: [g,chi] = znchar(Mod(109,116))
 

Basic properties

Modulus: \(116\)
Conductor: \(29\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{29}(22,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 116.i

\(\chi_{116}(5,\cdot)\) \(\chi_{116}(9,\cdot)\) \(\chi_{116}(13,\cdot)\) \(\chi_{116}(33,\cdot)\) \(\chi_{116}(93,\cdot)\) \(\chi_{116}(109,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: \(\Q(\zeta_{29})^+\)

Values on generators

\((59,89)\) → \((1,e\left(\frac{13}{14}\right))\)

Values

\(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\(1\)\(1\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(-1\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{11}{14}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 116 }(109,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{116}(109,\cdot)) = \sum_{r\in \Z/116\Z} \chi_{116}(109,r) e\left(\frac{r}{58}\right) = -1.4253966502+10.6755910557i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 116 }(109,·),\chi_{ 116 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{116}(109,\cdot),\chi_{116}(1,\cdot)) = \sum_{r\in \Z/116\Z} \chi_{116}(109,r) \chi_{116}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 116 }(109,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{116}(109,·)) = \sum_{r \in \Z/116\Z} \chi_{116}(109,r) e\left(\frac{1 r + 2 r^{-1}}{116}\right) = 0.0 \)