# Properties

 Label 1152.x Modulus $1152$ Conductor $96$ Order $8$ Real no Primitive no Minimal no Parity odd

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(1152, base_ring=CyclotomicField(8))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,7,4]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(17,1152))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$1152$$ Conductor: $$96$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$8$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 96.p sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{8})$$ Fixed field: 8.0.173946175488.1

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$
$$\chi_{1152}(17,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{3}{8}\right)$$ $$-i$$ $$e\left(\frac{7}{8}\right)$$ $$e\left(\frac{1}{8}\right)$$ $$1$$ $$e\left(\frac{1}{8}\right)$$ $$-i$$ $$-i$$ $$e\left(\frac{1}{8}\right)$$ $$1$$
$$\chi_{1152}(305,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{8}\right)$$ $$i$$ $$e\left(\frac{5}{8}\right)$$ $$e\left(\frac{3}{8}\right)$$ $$1$$ $$e\left(\frac{3}{8}\right)$$ $$i$$ $$i$$ $$e\left(\frac{3}{8}\right)$$ $$1$$
$$\chi_{1152}(593,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{7}{8}\right)$$ $$-i$$ $$e\left(\frac{3}{8}\right)$$ $$e\left(\frac{5}{8}\right)$$ $$1$$ $$e\left(\frac{5}{8}\right)$$ $$-i$$ $$-i$$ $$e\left(\frac{5}{8}\right)$$ $$1$$
$$\chi_{1152}(881,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{8}\right)$$ $$i$$ $$e\left(\frac{1}{8}\right)$$ $$e\left(\frac{7}{8}\right)$$ $$1$$ $$e\left(\frac{7}{8}\right)$$ $$i$$ $$i$$ $$e\left(\frac{7}{8}\right)$$ $$1$$