Properties

Label 1152.55
Modulus $1152$
Conductor $64$
Order $16$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1152, base_ring=CyclotomicField(16))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([8,11,0]))
 
pari: [g,chi] = znchar(Mod(55,1152))
 

Basic properties

Modulus: \(1152\)
Conductor: \(64\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{64}(35,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1152.bf

\(\chi_{1152}(55,\cdot)\) \(\chi_{1152}(199,\cdot)\) \(\chi_{1152}(343,\cdot)\) \(\chi_{1152}(487,\cdot)\) \(\chi_{1152}(631,\cdot)\) \(\chi_{1152}(775,\cdot)\) \(\chi_{1152}(919,\cdot)\) \(\chi_{1152}(1063,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.0.604462909807314587353088.1

Values on generators

\((127,901,641)\) → \((-1,e\left(\frac{11}{16}\right),1)\)

Values

\(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\(-1\)\(1\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(i\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(1\)
value at e.g. 2