sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1152, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,1,2]))
pari:[g,chi] = znchar(Mod(287,1152))
\(\chi_{1152}(287,\cdot)\)
\(\chi_{1152}(863,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,901,641)\) → \((-1,i,-1)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 1152 }(287, a) \) |
\(1\) | \(1\) | \(-i\) | \(1\) | \(i\) | \(-i\) | \(-1\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(-1\) |
sage:chi.jacobi_sum(n)