Properties

Label 1152.287
Modulus $1152$
Conductor $48$
Order $4$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1152, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([2,1,2]))
 
Copy content pari:[g,chi] = znchar(Mod(287,1152))
 

Basic properties

Modulus: \(1152\)
Conductor: \(48\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{48}(11,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1152.l

\(\chi_{1152}(287,\cdot)\) \(\chi_{1152}(863,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.18432.1

Values on generators

\((127,901,641)\) → \((-1,i,-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 1152 }(287, a) \) \(1\)\(1\)\(-i\)\(1\)\(i\)\(-i\)\(-1\)\(i\)\(-1\)\(-1\)\(i\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1152 }(287,a) \;\) at \(\;a = \) e.g. 2