Properties

Label 1148.ch
Modulus $1148$
Conductor $287$
Order $60$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1148, base_ring=CyclotomicField(60))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,50,33]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(5,1148))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(1148\)
Conductor: \(287\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 287.bd
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(23\) \(25\)
\(\chi_{1148}(5,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{1148}(33,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{1148}(61,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{1148}(185,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{1148}(213,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{1148}(241,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{1148}(285,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{1148}(453,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{1148}(661,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\)
\(\chi_{1148}(677,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{15}\right)\)
\(\chi_{1148}(689,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{1148}(705,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{15}\right)\)
\(\chi_{1148}(717,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\)
\(\chi_{1148}(733,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{1148}(941,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\)
\(\chi_{1148}(1109,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{15}\right)\)