Properties

Label 1148.975
Modulus $1148$
Conductor $1148$
Order $12$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(1148, base_ring=CyclotomicField(12))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([6,4,3]))
 
pari: [g,chi] = znchar(Mod(975,1148))
 

Basic properties

Modulus: \(1148\)
Conductor: \(1148\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1148.bj

\(\chi_{1148}(319,\cdot)\) \(\chi_{1148}(583,\cdot)\) \(\chi_{1148}(975,\cdot)\) \(\chi_{1148}(1075,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.0.7730346814571482180653056.1

Values on generators

\((575,493,785)\) → \((-1,e\left(\frac{1}{3}\right),i)\)

Values

\(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\(-1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(-i\)\(-i\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1148 }(975,a) \;\) at \(\;a = \) e.g. 2